El estrés oxidativo y el destino celular

María del C. Ríos de Molina

Departamento de Química Biológica, FCEyN, UBA

Recibido:

Recibido en: 04/03/2003

| Aceptado:

Aceptado en: 22/03/2003

Contacto: María del C. Ríos de Molina - mcrios@qb.fcen.uba.ar

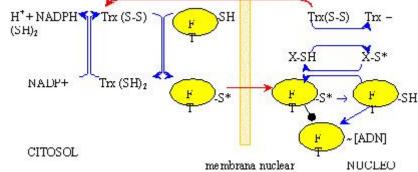
En la actualidad existe una amplia difusión acerca de productos farmacéuticos y/o cosmetológicos que exaltan los beneficios del uso de **antioxidantes** con fines muy diversos, tales como prevención o mejoría ante enfermedades, mejoría en la calidad de vida, tratamientos antienvejecimiento. En las propagandas de estos productos se utilizan y tratan de explicar (con mayor o menor grado de veracidad) términos tales como estrés oxidativo, radicales libres, antioxidantes, especies reactivas del Oxígeno, vitaminas antiestrés, etc.

¿Cuán veraces son esas aseveraciones? ¿Qué son los radicales libres? ¿Cómo y dónde se producen? ¿Se puede prevenir o revertir el estrés oxidativo con el empleo de antioxidantes? ¿Qué consecuencias puede tener para la célula y para un organismo viviente el estrés oxidativo? ¿El efecto de cualquier tipo de oxidante se contrarresta con cualquier tipo de antioxidante?

En el presente trabajo trataremos de dar algunas respuestas a estos interrogantes, aun a sabiendas de que surgirán muchos interrogantes más y que quizás por bastante tiempo no estaremos en condiciones de dar una respuesta integral y satisfactoria a todos ellos.

Día a día aumenta el número de enfermedades en cuya etiología estaría involucrado el estrés oxidativo que se produce cuando el ataque oxidativo supera las defensas antioxidantes. El tejido nervioso parece ser un blanco propicio para los compuestos prooxidantes, dada sus características químicas, tales como alto contenido en ácidos grasos poliinsaturados, altas concentraciones de hierro y bajo contenido en enzimas antioxidantes. Hay investigaciones que demuestran una clara intervención del estrés oxidativo en el desarrollo de la enfermedad de Alzheimer, en Parkinson y en esclerosis lateral amiotrófica, entre otras enfermedades del sistema nervioso.

También se ha encontrado asociación entre estrés y envejecimiento y con numerosas enfermedades adquiridas por exposición a xenobióticos. Muchas investigaciones en marcha están tratando de explicar la participación de las especies reactivas de oxígeno (EROs) en el desarrollo y características clínicas de varias enfermedades, tales como diabetes, cirrosis alcohólica, hipertiroidismo, cáncer, etc. De los resultados obtenidos se trata de sugerir o encontrar nuevas estrategias para el tratamiento de estas enfermedades y/o recomendar el uso de antioxidantes como medicina preventiva o adicional al tratamiento específico de las mismas.


Por último, hay fuerte interés en conocer la asociación entre estrés oxidativo y actividad física. Varios trabajos demuestran que existe inducción de estrés oxidativo en individuos sujetos a intensa ejercitación física, pero al mismo tiempo se ha comprobado que en estos individuos aumentan las defensas antioxidantes tanto enzimáticas como mediadas por atrapantes de radicales libres de bajo peso molecular. Por otra parte, se ha comprobado que la actividad física conlleva una variación en la naturaleza de las lipoproteínas plasmáticas, favoreciendo el contenido del llamado colesterol bueno frente al malo, con la consiguiente disminución de riesgo coronario. Hay varios trabajos que demuestran la implicancia de la peroxidación lipídica de las fracciones proaterogénicas en el desarrollo de la aterosclerosis, la cual podría prevenirse, por lo tanto, mediante un adecuado entrenamiento físico.

El estrés oxidativo es un estado de la célula en la cual se encuentra alterada la homeostasis óxido-reducción intracelular, es decir el balance entre prooxidantes y antioxidantes. Este desbalance se produce a causa de una excesiva producción de especies reactivas de oxígeno (EROs) y/o por deficiencia en los mecanismos antioxidantes, conduciendo a daño celular.

En analogía al término "estrés oxidativo", Hausladen y Stambler han denominado "estrés nitrosativo" a la excesiva o desregulada formación del radical óxido nítrico (NO) y especies reactivas del Nitrógeno (ERNs) derivadas del mismo (1).

Estado de óxido - reducción de la célula.

El estado de óxido - reducción de la célula está determinado por el equilibrio entre las contrapartes oxidadas y reducidas de los distintos compuestos biológicos presentes en ella, principalmente de aquellos que se encuentran en mayor proporción. El tripéptido glutation (GSH, g-L-glutamil-L-cisteinil-glicina), debido a su alta concentración intracelular (5-10 mM), se considera un regulador homeostático del estado de óxido- reducción celular. Este metabolito se encuentra presente en su forma oxidada en sólo un 1 % del total, es decir que predomina ampliamente su forma reducida (GSH) sobre la oxidada (GSSG). Esto trae como consecuencia que un ligero desplazamiento del equilibrio hacia la forma oxidada afecta drásticamente el estado de óxido-reducción general, debido a su participación en muchos equilibrios de óxido reducción acoplados. En particular esto es crítico para la regulación (*prendido* o *apagado*) de algunos factores de transcripción, cuya actividad depende del estado de óxido-reducción en el que se encuentren. El siguiente esquema representa los procesos que pueden ocurrir relacionados al prendido y apagado de genes bajo condiciones de estrés (-S* grupo sulfhidrilo

Cuando un grupo -SH crítico sufre una modificación oxidativa la proteína afectada puede perder su funcionalidad. La siguiente serie de reacciones muestra los distintos equilibrio en los que puede participar un residuo cisteína:

Especies reactivas del Oxígeno (EROs)

Las principales especies reactivas del Oxígeno son: el radical superóxido (O_2^-) , el peróxido de Hidrógeno (H_2O_2) y el radical oxidrilo (HO). Una de las principales fuentes de EROs es la cadena respiratoria, donde pueden ocurrir las siguientes transferencias de electrones:

$$O_2$$
 O_2 O_2 O_3 O_4 O_5 O_5 O_7 O_7

En ella aproximadamente un 3 % de los electrones provenientes de NADH, por la incompleta reducción del Oxígeno, se desvían hacia la formación de EROs. Las EROs son capaces de oxidar macromoléculas biológicas, tales como proteínas, lípidos y ácidos nucleicos (2-4). Por otra parte, el H₂O₂ puede reaccionar con metales divalentes (libres o unidos a proteínas) y producir HO•, vía **reacción de Fenton**. El ejemplo tipo es la reacción con Fe⁺⁺ libre, que ocurre según la siguiente reacción:

$$Fe^{++} + H^{+} + H_2O_2$$
 Fe⁺⁺⁺ $+ HO^{-} + H_2O$ (principalmente en citosol)

En forma similar, puede reaccionar también con el grupo prostético de metaloproteínas conteniendo hierro (ej. con la dihidroxiácido dehidrasa, la 6 fosfogluconato dehidrasa, las fumarasas A y B o la aconitasa), según la **reacción de Haber Weis**:

Fe⁺⁺⁻-complejo +
$$O_2$$
 \longrightarrow Fe⁺⁺-complejo + O_2 HO + HO + Fe⁺⁺⁺-complejo
$$O_2 - + O_2 - O_2 - O_2 + O_3 - O_4 + O_4 + O_5$$

El HO puede reaccionar con distintas macromoléculas (proteínas, lípidos y ácidos nucleicos, principalmente), en las que por cesión de un electrón produce otras especies reactivas, a través de mecanismos y de intermediarios aun desconocidos. En estos casos se dice que ha intervenido el radical oxidrilo, entendiendo como tal a un radical proveniente de oxidaciones univalentes, iniciadas por una reacción de tipo Fenton (5). En este tipo de reacciones la hidroxilación y la abstracción de Hidrógeno son las modificaciones más comunes que sufre el sustrato orgánico involucrado y se generan otros radicales libres orgánicos tales como: los radicales alcohoxilos (RO), peroxilos (ROO) y sulfoderivados.

La formación de radical superóxido (O_2^{-}) también puede ocurrir a nivel de la NADPH-oxidasa según la siguiente reacción:

$$2\mathrm{O}_2^- + \mathrm{NADPH} \quad \text{ } ^{\circledR} \quad 2\mathrm{O}_2^- \cdot ^- + \mathrm{NADP}^+ + \mathrm{H}^+$$

con la participación de un complejo de proteínas, que por estrés oxidativo sufren modificaciones conformacionales, exponiendo distintos sitios de interacción proteica, que le permiten unirse a 2 ferro-proteínas integrales de membrana. De esta manera queda formado un complejo proteico con actividad NADPH-oxidasa (6). La activación de este complejo está mediada por el sistema Ras.

Las proteínas Ras forman parte de una superfamilia de proteínas con afinidad por GTP (7). Cuando Ras se une a GTP, se activa su actividad GTPasa, se hidroliza un fosfato, Ras pierde afinidad por el nucleótido resultante (GDP), y luego por GAP (la proteína activante de su actividad GTPasa). La energía liberada durante este ciclo se usa para producir modificaciones conformacionales en distintos sistemas proteicos, que conducen a la activación de complejos enzimáticos. Un ejemplo de este complejo mecanismo es la activación de la NADPH oxidasa arriba mencionada, la cual se ha comprobado que, bajo condiciones de estrés oxidativo provocado por invasión por patógenos, se activa a través de un mecanismo regulado por Ras. En un medio aeróbico se desarrollarán las siguientes reacciones:

Explosión oxidativa, con propiedades antimicrobianas (demostrada en plantas y otros sistemas biológicos)

Existen otras dos EROs, con características especiales: el Oxígeno singulete ($^{1}O_{2}$) y el hipoclorito (en su forma no protonada ClO $^{-}$ o protonada, llamado también ácido hidrocloroso).

El $^{1}\mathrm{O}_{2}$ es una forma excitada de la molécula de Oxígeno diatómico (triplete):

$$O_2$$
 + O_2 O_2

Esta especie reactiva tiene gran tendencia a reaccionar con moléculas orgánicas ya que, al tener un momento de espín igual a cero, comparte con éstas el estado singulete. El $^{1}O_{2}$ puede originarse por transferencia de energía desde otra molécula reactiva, por reacciones fotoquímicas o por reacciones en ausencia de Oxígeno. Las siguientes ecuaciones representan su formación en esta última situación, que ocurre especialmente en neutrófilos, ricos en cloroperoxidasas (que aceleran la primera reacción) y en ${\rm H_2O_2}$ (el cosustrato en la segunda reacción):

$$\begin{aligned} &\mathbf{H_2O_2} + \mathbf{Cl^-} & & & \mathbf{@} & & \mathbf{OCl^-} + \mathbf{H_2O} \\ &\mathbf{H_2O_2} + \mathbf{OCl^-} & & & & & \mathbf{^1O_2} + \mathbf{H_2O} + \mathbf{Cl^-} \end{aligned}$$

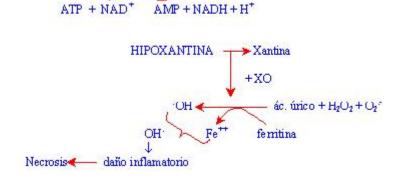
La producción fotoquímica de $^1\mathrm{O}_2$, puede ocurrir a partir de fotosensibilizadores endógenos (porfirinas, flavinas, quinonas) o exógenos (Rosa de Bengala, Azul de Metileno) y por radiación visible o UV. También puede generarse en procesos inflamatorios o por excitación química con carbonilos excitados, proceso que puede ocurrir aun en oscuridad. La irradiación tópica de tejidos tumorales preexpuestos a sensibilizadores, lleva a la necrosis por producción fotodinámica fundamentalmente del $^1\mathrm{O}_2$ (8).

Efectos de las EROs

Se ha demostrado que el $^{1}O_{2}$ es un mediador de los efectos citotóxicos inducidos por la radiación UVA, produciendo activación del factor de transcripción AP-2, activa la cascada de señales que involucra otros factores de la cascada de señales tales como las quinasas de la región N terminal de c-Jun (JNK, p38-MAPK y NF-kB), participando en el sistema de transducción de señales, que lleva a apoptosis o a recuperación de la célula , dependiendo del estado inicial de la misma. Entre los daños a macromoléculas que puede ejercer el $^{1}O_{2}$, está el daño al ADN, debido a la oxidación de residuos guanina a 7-hidro-8-oxo deoxignanosina (8 oxo-Gu). Este nucleótido lleva luego a la transversión de G:C a T:A, provocando así mutaciones que pueden llevar a la muerte celular.

Las proteínas cuya traducción se ha reportado que es inducida por $^1\mathrm{O}_2$ son, entre otras: la hemooxigenasa 1 (HO-1), la colagenasa instersticial (metaloproteinasa 1, de la matriz o MMP-1), las interleuquinas IL-1 a/b e IL-6, la molécula de adhesión intercelular ICAM-1 y el ligando Fas.

La HO (que se induce también por radiación UVA y por H₂O₂ y está modulada por niveles de GSH) cataliza la primera de las siguientes reacciones, que llevan a la producción de dos especies antioxidantes, la bilirrubina y la biliverdina:


El átomo de Fe que se libera en la conversión del hemo a biliverdina, se transporta a la médula ósea por medio de unabglobina, llamada transferrina, por lo que la mayor parte de este Fe se recupera en lugar de excretarse. Una parte pasa, en el hígado, a la ferritina, almacenándose en un hueco de aproximadamente 12 mm de diámetro, donde se pueden alojar cerca de 4000 iones férricos/molécula de enzima. Es evidente que la cantidad de hierro libre en la célula es muy baja, constituyendo estas proteínas (la ferritina y la transferrina) un importante mecanismo de defensa antioxidante, ya que al secuestrar al hierro impiden que participe en la reacción de Fenton y se inicie la cadena de radicales libres arriba comentada.

Respuesta adaptativa al estrés oxidativo

Se ha comprobado que el promotor de la hemooxigenasa 1 (HO-1) contiene sitios de unión a factores de transcripción AP-1, AP-2 y NF-kB, que también se activan por estrés oxidativo, resultando en la síntesis de numerosas proteínas, que se conocen como enzimas respondedoras al estrés. La inducción de la HO-1 se considera una "respuesta adaptativa" al estrés oxidativo. La respuesta adaptativa u hortesis es el fenómeno celular por el cual la exposición a un agente tóxico (en concentraciones subletales) provoca una respuesta celular que protejerá posteriormente a la célula contra los efectos deletereos del mismo tóxico a concentraciones letales, dicho en otras palabras, es un efecto benéfico desencadenado con bajo nivel de exposición a un agente que es dañino a altos niveles. Este efecto es muy importante en casos de estrés oxidativo. Así, se ha comprobado que la exposición a bajos niveles de radiación o a O2 hiperbárico aumenta las defensas antioxidantes. La terapia con O₂ hiperbárico al hombre (100% O₂ a 2,5 atmósferas), por ejemplo, induce cambios significativos en el daño oxidativo al ADN, en células sanguíneas periféricas, pero luego el daño se estabiliza, en tanto que las defensas antioxidantes suben. El resultado es una bajada en la línea de base del daño celular total, específicamente a nivel de daño oxidativo al ADN, desencadenado inicialmente por el tratamiento. Pretratamientos de este tipo se suelen utilizar en pacientes que deben ser sometidos a una intervención quirúrgica, para minimizar los daños laterales provocados por el estrés oxidativo. Por otra parte (9), se ha comprobado que con tratamientos que provocan bajos niveles de oxidación y en condición normales de reparación, las células toleran cierta carga de aductos oxidados que contribuyen a la velocidad de mutación espontánea y muerte de células extremadamente dañadas, lo cual puede resultar benéfico para el sistema total (órgano y/o tejido) bajo determinadas condiciones.

Otras fuentes de EROs

Otra fuente de EROs está relacionada a la cupla xantino/xantino oxidasa (oxidasas catabólicas, presentes en los peroxisomas) (10). La acumulación de hipoxantina y xantina, bajo condiciones anaeróbicas, de isquémia/reperfusión (deficiencia en la irrigación sanguínea -que empobrece la llegada de sangre y, por consiguiente, de Oxígeno a un tejido-conxantino des nucleos de consequente afluencia de Oxígeno a contenido energético, puede desembocar en

Especies reactivas del Nitrógeno (ERNs)

Las principales ERNs son el óxido nítrico (NO·) y el peroxinitrito (ONOO·) considerado como uno de los más potentes oxidantes biológicos (11). Las ERNs pueden dañar y matar células por distintos mecanismos: inactivación de los distintos complejos de la cadena respiratoria (12), daño a proteínas y a lípidos (3, 4, 13, 14), inhibición de síntesis proteica o de ADN (15, 16), depleción de GSH o de ATP (17, 18).

El ONOO está en equilibrio con una forma activada de estructura desconocida, que reacciona con metionina para dar metilsulfóxido o, en presencia de CO₂, un derivado con actividad nitrante de compuestos aromáticos (3). La principal fuente de ERNs, en células de mamíferos, es la oxidación enzimática de L-arginina por la NO sintasa (19).

El NO es una molécula de señal ubicua, que funciona en la regulación de distintos procesos en los sistemas nervioso, cardiovascular e inmune (20, 21). Está asociado a procesos inflamatorios neurotóxicos y de isquemia/reperfusión. Se ha propuesto que el NO actuaría induciendo la producción mitocondrial de peroxinitrito. Este produciría a su vez la inhibición del complejo I de la cadena respiratoria (NADH:Ubiquinona reductasa), lo cual tiene un efecto crítico sobre el suplemento de energía en varios tejidos (22) y sobre la producción de EROs. Los efectos del NO sobre la generación de EROs mitocondrial son complejos (11), la producción de EROs y ERNs inducida por NO y su posterior modulación son

iniciados por la reacción entre NO y el ubiquinol llevando a la formación y autooxidación de la ubisemiquinona. Posteriormente se forma una intrincada red de equilibrios de óxido-reducción, involucrando al ubiquinol, al anión superóxido, al peroxinitrito y al óxido nítrico, que cubre un amplio campo en los aspectos regulatorios y protectores contra el estrés oxidativo. El balance final de daño por estrés oxidativo o de protección por defensas antioxidantes en mitocondrias, dependerá del contenido de ubiquinol y de NO en el estado estacionario, del nivel de enzimas antioxidantes y de la extensión de la inhibición inducida en el Complejo I en la membrana mitocondrial.

Otro tipo de especies reactivas que se pueden producir durante procesos de estrés oxidativo, son las llamadas especies bioluminiscentes (BLUE) de larga vida (23). En nuestro laboratorio, en estudios experimentales de alcoholismo crónico y de intoxicación crónica con hidrocarburos aromáticos polihalogenados, pudimos comprobar que se generan estas BLUE, cuya detección permite hacer un seguimiento de la evolución de las patologías asociadas (24). El hecho que ambos tratamientos producen especies reactivas (24, 25) avalan la hipótesis que las BLUE provendrían del estrés oxidativo desencadenado por este tipo de tratamientos.

Defensas antioxidantes

Si bien todos los organismos vivos soportan numerosos factores endógenos y exógenos de estrés oxidativo, al mismo tiempo poseen numerosos sistemas de defensas antioxidantes regulables, enzimáticos y no enzimáticos.

Existen enzimas que actúan específicamente sobre determinadas especies reactivas (5). Así, la superóxido dismutasa dismuta (reacción a través de la cual dos moléculas iguales se transforman en otras dos moléculas distintas) al O_2^- . a O_2 y H_2O_2 , la catalasa transforma al H_2O_2 en O_2 y agua, la GSH-peroxidasa cataliza la reducción de peróxidos (ROOH, inclusive al H_2O_2) a alcoholes (ROH), aprovechando el potencial reductor del GSH. Existen otras enzimas, tales como las quinonas reductasas y hemo oxigenasa, que pueden prevenir la formación de EROs, por ciclado de electrones.

La familia de las superóxido dismutasas (SOD) ha ido en aumento y ya se han descubierto al menos tres miembros además de las dos proteínas inicialmente detectadas (la Mn SOD mitocondrial y la Zn/ Cu- SOD citoplasmática, que dan cuenta del 100% de la actividad SOD intracelular) (5). La Cu/ Zn- SOD citosólica, es inhibible por cianuro, su actividad representa el 90% de la actividad del homogenato total. La Mn- SOD, mitocondrial se puede determinar por diferencia entre la actividad SOD total y la actividad SOD en presencia de cianuro. Se han descubierto dos SOD extracelulares: la llamada EC- SOD extracelular, en humanos se presenta como un homotetrámero siendo secretada por las células que la producen. También ha sido detectada en plantas, bacterias y en nemátodos. Su función sería interceptar el O2- exógeno (por ejemplo, los liberados por leucositos fagocíticos) evitando de esta forma la posible reacción del NO, con el O2- aumenta la vida del NO y disminuye la generación del ONOO-, uno de los oxidantes más potentes. Está glicosilada y exhibe afinidad por polisacáridos sulfatados, tales como la heparina o la heparina sulfatos, por esta razón, si bien se detecta en plasma sanguíneo se encuentra unida a la matriz extracelular. La segunda SOD extracelular, el Cu/Zn-SODp o periplásmica, existe en unas pocas especies de bacterias Gram negativas. Su función sería proteger a la célula contra el O2- exógeno. La última SOD descripta es una Ni-SOD, detectada en Streptomyces, es homotetramérica y no tiene homología con las SOD previamente reportadas.

Regulación de la respuesta al estrés oxidativo

El gen de las SOD, conjuntamente con el de otras proteínas sensibles al estrés está regulado por el regulón SoxRS. Un regulón es un grupo de genes regulados coordinadamente. En el caso del regulón SoxRS, el factor activante es el aumento en la concentración del O_2 . Algunos de los productos resultantes al activarse SoxRS son: la Mn –SOD (enzima encargada de eliminar O_2 .), la Glu 6p deshidrogenasa (que asegura el suplemento de NADPH), la endonucleasa IV (miembro del sistema de reparación del ADN dañado), la ferredoxina reductasa (que activa las Fe-S proteínas, reparando su centro 4Fe-4S, dañado por el estrés oxidativo), la mic F (disminuye la porosidad de la membrana mitocondrial interna, ayudando así a recomponer el potencial de membrana). El péptido SoxR, es el sensor de óxido-reducción, que en su estado oxidado activa a la proteína SoxS. La SoxS activa vuelve a unirse al regulón SoxRS, activando su operón y causando la activación transcripcional. El regulón SoxRS representa la mitad de la defensa antiestrés intracelular. Existe otro regulón, el OxyR, que es independiente de SoxRX y responde al H_2O_2 , dando cuenta del otro 50 % de la defensa antioxidante, desencadenada por estrés oxidativo.

Algunos metales, tales como el Se y el Zn, por su participación como cofactores de enzimas antioxidantes (GPx y SOD citoplasmática, respectivamente), contribuyen a aumentar las defensas antioxidantes.

La catalasa se encuentra en todos los órganos, pero especialmente en el hígado y en los eritrocitos. Localizada principalmente en peroxisomas, es una hemo proteína, que tiene asociada una molécula de NADPH para estabilizar la molécula.

Rol del glutation en la respuesta antioxidante

La GSH peroxidasa (GPx, presente en mitocondrias, citosol y peroxisomas) contribuye a las defensas antioxidantes, actuando en la regeneración del glutation a su estado reducido. La tiorredoxina reductasa y algunas proteínas, tales como las metalotioneina, ricas en residuos cisteínas, también participan en la restauración de los niveles de GSH reducido, poseyendo por ello propiedades antioxidantes (26).

La melatonina (el principal producto de la glándula pineal) es un atrapante de radicales libres (OH, NO·, $^1{\rm O}_2$ y ONOO-), penetra distintas barreras intracelulares, se acumula en los núcleos, donde protege al ADN de distintos factores de estrés (efecto de metales, radiaciones ionizantes, etc.). Entre los distintos tratamientos que se están aplicando para aminorar o revertir los daños provocados por el estrés oxidativo, el uso de melatonina parece muy promisorio. Wenbo y col. (27) probaron los efectos de melatonina, manitol y trolox (atrapante de radicales libres) para inhibir la formación de 8OH Gu (indicador de daño al ADN), en un sistema experimental de daño por el ácido d-aminolevúlico (dALA), en presencia de

Entre las defensas antioxidantes no enzimáticas, tiene un lugar predominante el glutation (GSH). Esta pequeña molécula protege a la célula contra diferentes especies oxidantes y se ha comprobado su participación clave en numerosos desórdenes neurodegenerativos (28). Tanto el GSH como otras moléculas conteniendo tioles, tienen alto poder reductor y, por consiguiente, poseen propiedades antioxidantes, ya que pueden cederle un electrón a las EROs y/o ERNs, disminuyendo de esta forma su reactividad. Se dice que este tipo de compuestos de bajo peso molecular actúan como "atrapantes" de radicales libres. Entre ellos podemos citar a la tiorredoxina (Trx) y a la vitamina C o ácido ascórbico (hidrosoluble) y a las vitaminas liposolubles E o alfa tocoferol (unida a membrana) y A o axeroftol.

Antioxidantes en la alimentacion

La vitamina E captura especialmente al radical oxidrilo, siendo su principal fuente el germen de trigo; la vitamina A está presente en el aceite de hígado de pescado, en vegetales (tales como la zanahoria) ricos en carotenoides y la vitamina C en cítricos, tomate, frutilla y verduras. Las dos primeras, por ser liposolubles, pueden acumularse en grasas y/o membranas y aun no se sabe qué consecuencia puede tener el uso abusivo de las mismas, por eso es más aconsejable ingerirlas en los productos naturales que en su forma aislada.

Estudios epidemiológicos indican que la ingestión de frutas y vegetales confiere protección contra el desarrollo de cáncer, frecuentemente asociado a estrés oxidativo. Si bien se ha propuesto que el efecto benéfico de este tipo de alimentos radica en las propiedades antioxidantes de las vitaminas (29, 30) que contienen, cuando se administran vitaminas C y E y carotenoides puros no se obtienen resultados tan concluyentes. A partir de este estudio Potter (30) concluye que frutas y vegetales actuarían como una "polifarmacia" contra el desarrollo de enfermedades crónicas, conteniendo no sólo vitaminas sino también otros agentes antioxidantes, tales como los polifenoles (con propiedades de atrapantes de radicales libres y quelantes de metales), formando una compleja trama antioxidante. Los flavonoides son polifenoles antioxidantes, presentes en plantas y posiblemente los beneficios de la ingestión de frutas, vegetales y vino tinto, pregonado por los nutricionistas, radique en su alto contenido en estos antioxidantes polifenólicos. Los polioles (ej: sorbol) también activan fuertemente los caminos de señales sensibles a estrés (31).

Otros mecanismos de protección

Además de los mecanismos de protección antioxidante, enzimáticos y no enzimáticos, también contribuyen a paliar el posible daño oxidativo:

1- La fidelidad de las relaciones metabólicas de oxido reducción. Recordar que, en el sitio IV de la cadena respiratoria, la presencia de los citocromos a-a3 provee 4 sitios de transferencia de electrones para hacer más efectiva la transferencia y justamente allí no hay formación de EROs. En tanto que en los otros sitios a lo sumo hay una pérdida del 4%, debido a que la suma de los potenciales de los distintos sistemas de reducción intervinientes es francamente positivo, tirando el equilibrio hacia la derecha (sitio I ? sitio III? sitio IV)

- 2- Gran compartimentalización celular, lo que trae como consecuencia que las EROs y sus fuentes no siempre estén cerca de sus blancos de acción.
- 3- Varios factores estructurales de los ácidos nucleicos favorecen su protección ante el estrés oxidativo: la cromatina compacta, la presencia de histonas, la formación de complejos.

Destino celular

Cuando las especies reactivas oxidantes superan las defensas antioxidantes se produce el estrés oxidativo, hay daño a macromoléculas. La siguiente tabla resume los principales daños.

ADN	PROTEINAS	
Azúcar: base propenal? MDA	Oxidación grupos SH	Iniciación, p
Bases: 8-Oxo Gu, timina glicol y productos de hidrólisis espontánea	Oxidación residuos aromáticos Ataque a la unión peptídica ? derivados	Formación hidroperóxio lípidos, ADI
Azúcar + base: 5',8- ciclo deoxiGu	carbonílicos? clivaje	
Formación de aductos entre radicales: ADN- ADN, ADN- proteína		

El posible destino celular bajo condiciones de estrés, dependerá de varios factores: el contenido endógeno de defensas antioxidantes, el grado de estimulación de las mismas bajo la condición de estrés, la reversibilidad de las modificaciones a macromoléculas producidas, la magnitud del estrés oxidativo y sus consecuencias funcionales. Existen varios sistemas de reparación de daño al ADN, y a nivel de proteínas hay muchas reacciones que son reversibles, en tanto que los lípidos quizás sean las macromoléculas más establemente afectadas y con consecuencias más directas sobre la integridad celular, de allí la gran atención que se ha puesto en ellos.

Glosario

EROs: especies reactivas del Oxígeno

ERNs: especies reactivas del Nitrógeno

GSH: glutation reducido

GSSG: glutation oxidado

Trx: tiorredoxina

O₂-: radical superóxido

HO: radical oxidrilo

Eº: potencial de reducción estándar

OCl-: hipoclorito

¹O₂: Oxígeno singulete

8 oxo-Gu: 7-hidro-8-oxo deoxignanosina

UVA: radiación ultravioleta A

MMP: metaloproteasas de matriz

ONOO-.: peroxinitrito

BLUE: especies bioluminiscentes

SOD: superóxido dismutasa

GPx: glutation peroxidasa

Bibliografia

- 1. Hausladen A, Stambler I S, 1999. Nitrosative Stress. Methods Enzymol. 300: 389-395.
- 2. Henle E S, Linn S, 1997. Formation, prevention, and repair of DNA damage by Iron/Hydrogen peroxide. J. Biol. Chem. 272 (31): 19095-19098.
- 3. Berlett B S, Stadtman E R, 1997. Protein oxidation in aging, disease and oxidative stress. J. Biol. Chem. 272: 20313-20316.
- 4. Steinberg D, 1997. Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 272: 20963-20966.
- 5. Fridovich I, 1997. Superoxide anion radical (O2⁻). Superoxide dismutases and related matters. 172: 18515-18517
- 6. García Triana G, 2001. NADPH oxidas fagocítica: características, ensamblaje y mecanismo de acción. Cap 2.2. Estrés oxidativo en Biomedicina. Libro electrónico. Ed. Biomed-CECAM. La Habana. Cuba. 2001.
- 7. Hassanain H H, Goldschmidt-Clermont P. J. 2001. Rac, superoxide, and signal transduction. En: Antioxidant and Redox Regulation of Genes. Ed.: Sen C. K., Sies H, Baeverle P. A. Acad. Press, San Diego. Cap. 3, pp 47-79.
- 8. Klotz L-O, Briviba K, Sies H, 2001. Signaling by Singlet Oxygen in Biological Systems. En: Antioxidant and Redox Regulation of Genes. Ed.: Sen C. K., Sies H, Baeverle P. A. Acad. Press, San Diego. Cap. 1, pp 3-20.
- 9. Cranfor D R, Davies K J A, 1994. Adaptative response and oxidative stress. Envión. Health Perspect. 102: 25-28.
- 10. Bermúdez Fajardo A, 2001. Xantina oxidasa. Cap 2.1. Estrés oxidativo en Biomedicina. Libro electrónico. Ed. Biomed-CECAM. La Habana. Cuba. 2001
- 11. Schöpfer F, Riobó N, Carreras M C, Alvarez B, Radi R, Boveris A, Cadenas E, Poderoso J, 2000. Oxidation of Ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage. Biochem. J. 349: 35-42.
- 12. Brown G C, 1999. Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta 1411: 351-369.
- 13. Tien M, Berlett B S, Levine R L, Chock P B, Stadtman E R, 1999. Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation. Proc. Natl. Acad. Sci. USA 96: 7809-7814.
- 14. Prescott S M, 1999. A tematic series on oxidation of lipids as a source of messengers. J.Biol. Chem. 274 (3): 22901.
- 15. Kim Y M, Son K, Hong S J, Green A, Chen J J, Tzeng E, Hierholzer C, Billiar T R, 1998. Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2

alpha. Mol. Med. 4: 179-190.

- 16. Bundy R E, Marczin N, Chester A H, Yacoub M, 2000. A redox-based mechanism for nitric oxide-induced inhibition of DNA synthesis in human vascular smooth muscle cells. Br. J. Pharmacol. 129: 1513-1521.
- 17. Melov S, 2002. Regulation of gluthation synthesis. Curr. Top. Cell Regul. 36: 95-116.
- 18. Pieper A A, Berma A, Zhang J, Snyder S H, 1999. Poly(ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol. Sci. 20: 171-181.
- 19. Mayer B, HemennD, 1997, Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem. Sci. 22: 477-481.
- 20. Bogdan C, Rollinghoff M, Diefenbach A, 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12: 64-76.
- 21. Schulz J B, Lindenau J, Seyfried J, Dichgans J, 2000. Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 267: 4904-4911.
- 22. Riobó N A, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, Poderoso J J, 2001. Nitric oxide inhibits mitochondrial NADH: ubiquinone reductase activity through peroxynitrite formation. Biochem. J. 359: 139-145.
- 23. Lissi E A, Salim-Hanna M, Sir T, Videla L A, 1992. Is spontaneous urinary visible chemiluminescence a refletion of in vivo oxiative stress? Free Rad. Biol. Med. 12: 317-322.
- 24. Ríos de Molina M C, Suárez Lissi M A, Armesto A, Lafourcade C, Lissi E, 1998. Rat urinary chemiluminescence: effect of ethanol and/or hexachlorobenze uptake. J. Biolumin. Chemilum. 13: 63-68.
- 25. Castro G D, Delgado de Layño A M A, Costantini M H, Casto J A, 2002. Rat Ventral Prostate Microsomal Biotransformation of Ethanol to Acetaldehyde and 1-hydroxyethyl radicals: Its potential contribution to prostate tumor promotion. Teratogenesis, Carcinogenesis and Mutagenesis. 22: 1-8.
- 26. Becker K, Gromer S, Heiner Schirner R, Muller S, 2000. Thiredoxin reductase as a pathophysiological factor and drug target. Eur. J. Biochem. 267: 6118-6125.
- 27. Wenbo Qi, Reiter R J, Tan D-X, Manchester L C, Calvo J R, 2001. Melatonine prevents d- aminolevulic acid-induced oxidative DNA damage in the presence of Fe⁺⁺. Mol Cell. Biochem. 218: 87-92.
- 28. Klatt P, Lamas S, 2000. Regulation of protein function by S- glutathiolation in response to oxidative and nitrosative stress. Eur. J. Biochem. 267: 4928-4944.
- 29. Rubbo H, Rad R, Anselmi D, Kirk M, barnes S, Butler J, Eiserich J P, Freeman B A, 2000. Nitric oxide reaction with lipid peroxide radicals spares alpha-tocopherol during lipid peroxidation. Greater oxidant protection from the pair nitric oxide/alpha-tocopherol than alpha-tocopherol/ascorbate. J. Biol. Chem. 275: 10812-10818.
- 30. Potter J D, 1997. Cancer prevention: epidemiology and experiment. Cancer Lett. 114: 7-9.
- 31. Lee A Y, Chung S S, 1999. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASER J. 13: 23-30.

www.quimicaviva.qb.fcen.uba.ar

Revista QuímicaViva Volumen 2, Número 1, Abril de 2003 ID artículo:F1010

DOI: no disponible Versión online