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La naturaleza es grande en las cosas grandes,

mas es grandísima en las cosas diminutas.
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Resumen

Se designa con el nombre de virus a agentes infecciosos microscópicos. Los virus que atacan bacterias

reciben el nombre de fagos. Descubiertos durante la segunda década del siglo XX se transformaron en una

herramienta fundamental para los grandes descubrimientos que condujeron a la biología molecular

moderna. Los fagos son posiblemente las entidades biológicas más antiguas que se encuentran en la

biosfera y las más abundantes, ya que su número se estima en 1031. Son activos agentes de transferencia

de genes y por lo tanto responsables en gran parte de la diversidad bacteriana. El conocimiento generado a

partir de su estudio dio lugar a diversas aplicaciones biotecnológicas entre ellas el uso como agentes

terapéuticos, en biocontrol y en seguridad alimentaria y agricultura.
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Phages, the Rosetta stone that deciphers biological hieroglyphs

Summary

Virus are microscopic infectious agents. Virus that attack bacteria are called phages. Discovered during the

second decade of the 20th century they were a fundamental tool for the great discoveries that led to modern

molecular biology. Phages are possibly the oldest biological entities found in the biosphere and the most

abundant since their number is estimated at 1031. They are gene transfer agents and therefore are highly

responsible for bacterial diversity. The knowledge generated from their study gave rise to various

biotechnological applications including their use as therapeutic agents and in food security.
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Introducción

La palabra virus (en latín =veneno) se utilizó originalmente para describir de manera específica y colectiva a

agentes infecciosos ultramicroscópicos y filtrables. Los virus específicos de bacterias fueron descubiertos

por Frederick Twort y FelixD’Herelle, respectivamente, en 1915 y 1917.D’Herelle propuso el nombre de



bacteriófago (o fago, del griego phagein: comer) al agente responsable de “la lisis transmisible de bacterias”

y diseñó el método de agar de doble capa, aún en uso, para cuantificarlos; fue además el primer científico

en observar el patrón básico “paso a paso” (one-step growth curve) de reproducción de los fagos (técnica

perfeccionada durante los años ´40 del siglo XX por Emory Ellis y Max Delbrück para determinar el período

de latencia y el número promedio de nuevas partículas de virus liberados por unidad de célula infectada (

burst-size), parámetros cinéticos necesarios para caracterizar la reproducción intracelular de un fago [1-2]

Los fagos usados inicialmente en investigación fueron fagos activos contra la especie Escherichia coli

(fagos lambda y los “siete enanitos”, o fagos de la serie T). En 1944 el grupo Phage Group, liderado por

Delbrück y formado por eminentes biólogos y físicos, concentró sus estudios de la estructura y función del

material hereditario de los seres vivos en un limitado número de fagos (fagos T1 a T7), usando unas pocas

cepas bacterianas y condiciones experimentales estandarizadas. Los resultados logrados contribuyeron a

unificar el campo de la genética bacteriana y al desarrollo de un nuevo paradigma, la biología molecular

moderna.

El desarrollo de técnicas basadas en la microscopía de epifluorescencia para visualizar y cuantificar los

fagos presentes en distintos nichos ecológicos, la secuenciación masiva de genomas microbianos y los

estudios metagenómicos hizo posible visualizar que los fagos son posiblemente las entidades biológicas

más antiguas y sin duda las más abundantes y ubicuas que existen en la biosfera. Se estima que hay

aproximadamente 1031 partículas virales.Los fagos ocupan prácticamente todos los nichos ecológicos; por

su capacidad lítica (se estima que son responsables de la muerte de aproximadamente el 20% -40% cada

24 h de las bacterias de los océanos [3] o como vehículos en la transferencia horizontal de genes, juegan

un papel determinante en la ecología y diversidad de las comunidades bacterianas. Los genomas de fagos

integrados en los genomas bacterianos pueden expresar toxinas y otros factores que contribuyen a la

virulencia y a la adaptación a nichos específicos de bacterias patógenas. Los fagos fueron también de gran

utilidad para descifrar el papel de las secuencias CRISPRs en la inmunidad adquirida en bacterias;

sistemas que están presentes en un 80% de arqueas y en el 50% de las bacterias.

Muchos investigadores que utilizaron a los fagos como organismos modelo de experimentación fueron

galardonados con el premio Nobel. A su vez, el conocimiento generado a partir del estudio de los fagos dio

lugar a diversas aplicaciones biotecnológicas; entre las más importantes: i) el uso de las enzimas de

restricción y otras enzimas derivadas de fagos para la generación de moléculas de DNA recombinante y el

desarrollo de la ingeniería genética; ii) la técnica de phage display, que permite la expresión de proteínas o

péptidos heterólogos en la cápside de un fago. Es una técnica muy poderosa utilizada, entre otros, para la

producción de anticuerpos monoclonales dirigidos contra dianas de cáncer y enfermedades inflamatorias y

péptidos con acción antimicrobiana; y iii) el desarrollo de la tecnología CRISPR-Cas9 que permite editar el

genoma de cualquier célula (incluso ha permitido modificar el DNA de embriones humanos) y en

diagnóstico, y que ha causado una verdadera revolución en las ciencias de la vida y de la salud.

Fagos. Generalidades

La partícula madura de los fagos es una nucleoproteína que posee una estructura con diferentes grados de

complejidad. Se reconocen tres morfologías principales: icosahédrica sin cola, icosahédrica con cola y

filamentosa. La clasificación de los fagos se basa en criterios tales como su especificidad de hospedador,

morfología, tipo de ácido nucleico, modo de infección, filogenia, serología, y sensibilidad a los agentes

físicos y químicos. La mayoría de los fagos estudiados poseen cola, constituyendo el orden Caudovirales,

que se distribuyen en cinco familias: Myoviridae, Siphoviridae, Podoviridae, Ackermannviridae y



Herelleviridae (International Committee onTaxonomy of Viruses ICTV https://talk.ictvonline.org/taxonomy/).

La cápside de los caudovirus puede ser icosahédrica o alargada y su cola puede ser contráctil (myovirus),

flexible y no contráctil (siphovirus) o muy corta y a veces “embebida” en la cápside (podovirus). Los fagos

poliédricos, filamentosos y pleomórficos constituyen menos del 10% de los fagos caracterizados. El material

genético de los fagos, que se encuentra rodeado de proteínas que lo protegen del medio ambiente, puede

ser una molécula de DNA o RNA, de hebra simple o doble, siendo en la mayoría de los fagos

caracterizados una molécula de DNA, con un tamaño variable entre 5 hasta 500 kilopares de bases. El

genoma de los fagos presenta una estructura característica de mosaico, producto de múltiples eventos de

recombinación con otros genomas virales y bacterianos. El DNA puede contener bases modificadas; i.e. el

fago T4 contiene 5´-hidroximetilcitosina pero no citosina.Otros fagos poseen proteínas covalentemente

unidas a los extremos de su genoma; i.e. el fago phi29 posee una proteína en los extremos 5´que

contribuye al inicio de la replicación de su DNA. El DNA presente en las cápsides de las partículas maduras

puede corresponder al equivalente de un genoma del fago (i.e. el genoma del fago lambda, cuyos extremos

son cohesivos y siempre idénticos) o ser mayor a este (i.e. el genoma del fago T4, cuyo genoma es lineal,

circularmente permutado, con repeticiones terminales directas de 3 a 6 kpb). Otros fagos encapsidan su

genoma como DNA circular (fago PM2) o segmentado (fago fi6, en tres segmentos de RNA y fago T5, DNA

lineal de doble cadena, con una de las hebras segmentada). Algunos fagos pueden encapsidar también

DNA bacteriano y transferirlo a otras células mediante un mecanismo de transferencia de genes

bacterianos denominado transducción. Las traducción puede ser especializada, cuando se transfieren

unos pocos genes (i.e., por una imprecisa excisión del profago lambda, el fago puede incorporar DNA del

gen gal o el gen bio en los extremos de su genoma), o bien generalizada, cuando se encapsida y transfiere

cualquier fragmento de DNA de la célula infectada. La transferencia de DNA mediada por transducción es

uno de los mecanismos de transferencia horizontal de genes, de gran importancia en la evolución de los

genomas procariotas. En el laboratorio, se puede generar también sistemas artificiales de transducción que

facilitan el estudio genético de bacterias recalcitrantes a otros mecanismos de transferencia genética [4]

Ciclos de vida

Ciclos de reproducción: lítico y lisogénico y según el ciclo de vida los fagos se agrupan en fagos virulentos

(ciclo lítico) y fagos temperados (pueden seguir ambos ciclos de reproducción). Otros dos ciclos

reconocidos son la pseudolisogenia y la Hay 2 principales infección crónica (i.e., fago M13). En la

pseudolisogenia el fago inyecta su DNA en la célula pero no se reproduce ni integra su genoma en el

cromosoma bacteriano; generalmente ocurre cuando las células se encuentran en una situación de

crecimiento desfavorable, posiblemente como una estrategia para preservar la sobrevida del genoma del

fago hasta que las condiciones de crecimiento celular son nuevamente favorables; i.e. el fago phi29 es un

fago lítico de Bacillus subtilis, y puede mantenerse en un estado inactivo en las esporas de su hospedador.

Otro ejemplo es el fago temperado P22, luego de infectar a Salmonella typhimurium el fago se mantiene por

un largo período en estado de pseudolisogenia, antes de integrarse en el genoma de su hospedador. En la

infección crónica, luego de la infección y reproducción, partículas maduras del fago se liberan

continuamente sin producir la muerte celular.

Se reconocen cinco etapas en el proceso de infección. La partícula viral se fija a la bacteria huésped

(adsorción) a través del reconocimiento de receptores específicos presentes en la envoltura celular e

inyecta su ácido nucleico (penetración; la inyección del DNA puede ser sincronizada o no, en función de la

temperatura y la presencia de sales de Mg, factores que afectan la fluidez del DNA empaquetado en las

cápsides); el fago luego expresa sus genes de una manera coordinada usando la maquinaria celular



(transición del metabolismo celular, controlado por el fago), para producir nuevas copias de las proteínas y

ácidos nucleicos del fago, las que se ensamblan en un gran número de nuevas partículas virales

(morfogénesis); finalmente, la envoltura celular se rompe (lisis celular) y se liberan los nuevos virus para

infectar nuevas bacterias. En bacterias Gram negativas se han identificado dos sistemas que participan en

la etapa de lisis celular: el modelo holina-endolisina y el modelo pinholina-endolisina SAR (Signal anchor

release); en ambos modelos participan endolisinas, holinas y espaninas. En el primero, la endolisina

responsable de la digestión del peptiglicano (PG) de la pared celular se sintetiza y se acumula en el

citoplasma; la holina se acumula en la membrana interna y su actividad es controlada por una antiholina; y

las dos espaninas se localizan, una en la membrana interna (MI) y la segunda en la membrana externa

(ME) de las células. Cuando se produce un colapso de la fuerza protomotriz (FPM), las holinas se activan y

forman pequeños poros en la MI que permiten la salida de la endolisina, la cual degrada el PG. La

degradación del PG per se no produce la lisis celular, aunque las células se vuelven esféricas, pero actúa

como señal activando a las espaninas que producen la fusión de las membranas, gatillando la lisis celular.

En el segundo modelo, la endolisina SAR se secreta al periplasma y queda anclada en MI por la señal

SAR. Cuando la holina en la MI dimeriza, produciendo poros de mayor tamaño que en modelo anterior, y la

FMP colapsa, lo que produce la liberación de la endolisina de la secuencia SAR. La degradación del PG es

nuevamente la señal para que las espaninas se activen provocando la lisis celular.

Los fagos virulentos siguen un ciclo lítico y se comportan como parásitos intracelulares obligados. En este

caso se presenta una carrera armamentista permanente entre la bacteria, presentando diversos

mecanismos de defensa contra el fago, y el fago, generando nuevas variantes para superar las barreras

presentadas por las bacterias u optimizando su nuevo ciclo de infección. En la Tabla 1 se sintetizan los

principales mecanismos de defensa bacterianos estudiados y las estrategias de los fagos para superarlos

[5-14].

Tabla 1. Mecanismos de resistencia

Mecanismo

de inhibición

Mecanismos de Resistencia/contrarresistencia

Interferencia

de la

adsorción

Modificación o mutación de los receptores específicos (proteína; polisacárido; lipopolisacárido; o

ácidos teicoicos) de la superficie celular / Mutación en la proteína RBP (proteína del fago que

une al receptor) puede reconocer el receptor mutado o adaptarse a nuevos receptores

celulares.

Variación de fase en la expresión del receptor / Expresión simultánea de dos formas RBP en las

partículas del fago para infección especializada.

Producción de exopolisacáridos (EPS) que enmascaran el receptor/ Producción de hidrolasas

que degradan el EPS.

Bloqueo de la

inyección del

DNA del fago

Lipoproteínas ancladas a la membrana celular o proteínas asociadas con los componentes de la

membrana pueden modificar la conformación del sitio de entrada del DNA del fago y bloquear

su inyección en la célula huésped. A veces, estas proteínas son codificadas por un fago

(profago o fago virulento: mecanismo de exclusión de la superinfección), para conferir

inmunidad contra otros fagos: i.e. la proteína Imm del fago T4 bloquea la translocación del DNA

de otros fagos en el citoplasma de la célula ya infectada por el fago T4.



Degradación

del genoma

del fago

inyectado

A- Los sistemas de RM consisten en una endonucleasa de restricción (R) y en una

metiltransferasa (M). La función principal del sistema es proteger a la célula contra la invasión

de DNA exógeno. El DNA del hospedador se encuentra protegido por metilación; cuando el

DNA del fago no metilado ingresa en una célula que posee el sistema (RM) será reconocido y

degradado por la enzima de restricción / Este tipo de resistencia es reversible; el fago puede

incorporar en su genoma a M para escapar de R, o bien pueden mutar la secuencia de

reconocimiento de R. El sistema DISARM es similar al sistema RM, pero la enzima de

restricción requiere de múltiple componentes. Son módulos integrados por cinco genes y

localizados en islas de defensa. Finalmente, el sistema pAgos utiliza moléculas de DNA y RNA

como guías para degradar el DNA invasor.

B- En los sistemas CRISPR–Cas (por Clustered Regularly Interspaced Short Palindromic

Repeats), las células mutantes a la infección incorporan en el locus CRISPR una pequeña

secuencia del DNA del fago (“espaciador”), el que una vez transcripto será utilizado como guía

de las nucleasas Cas para degradar el genoma del fago en un nuevo ciclo de infección / Los

fagos pueden superar esta barrera por mutación o inactivando el sistema CRISPR-Cas

mediante la expresión de proteínas anti-CRISPR-Cas.

Infección

abortiva (Abi)

Los sistemas Abi de resistencia abortan el proceso de infección y simultáneamente conducen a

la muerte de la célula hospedadora. Los blancos de acción son múltiples; un mecanismo Abi

puede interferir en la replicación del genoma, o en las etapas de transcripción y traducción, y

ensamblado de los fagos / Generalmente los fagos superan estas barrera por mutación

espontánea y adaptación.

A. Inyectado por sistemas de inmunidad innata: i) Enzimas de restricción/modificación (RM); ii) Islas de defensa
asociadas a RM (DISARM); iii) Proteínas argonauta (pAgos) .
B. Inmunidad adquirida: sistemas CRISPR-CAS

La evolución recíproca que se establece entre ambos es un importante impulsor de los procesos ecológicos

y evolutivos en las comunidades microbianas.Por el contrario, los fagos temperados pueden multiplicarse a

través del ciclo lítico o ingresar al ciclo lisogénico integrando su genoma, de manera reversible, en el

cromosoma de la célula huésped (se denomina profago al fago integrado y lisógeno a la bacteria portadora

del profago). La integración del profago puede ser preferentemente en un sitio específico del genoma

bacteriano (i.e., el profago lambda se integra entre los genes gal y bio de la bacteria E. coli) o al azar (i.e.,

fago Mu). En ciertos casos, el profago puede mantenerse no integrado, como un plásmido en el citoplasma

de la bacteria (i.e., el fago P1, con un genoma de DNA circular de doble hebra, y el fago N15, con su

genoma de DNA circular de simple hebra). El genoma del profago se replica junto al genoma bacteriano y

el estado lisogénico se mantiene por la represión de los genes responsables del ciclo lítico del fago. Sin

embargo, de manera espontánea o bajo ciertas condiciones específicas que dañan el DNA bacteriano e

inducen la respuesta celular SOS (i.e. estrés ambiental, tratamiento con antibióticos, estrés oxidativo, luz

UV), los profagos pueden activar su ciclo lítico de reproducción. Muchas bacterias no son lisógenos,

mientras que algunos lisógenos codifican más de una docena de profagos (polilisogenia); incluso muchos

de ellos pueden no ser funcionales (no generar partículas completas de fagos) aunque su permanencia en

el genoma bacteriano sugiere que contribuye al fitness de la bacteria. Se estima que el 14% de los

genomas de E. coli corresponden a genes de profagos. Factores tales como una alta multiplicidad de

infección, un pequeño volumen celular y el crecimiento celular en condiciones limitadas en nutrientes y a

bajas temperaturas, incrementan la frecuencia de lisogenización. En un reciente estudio se ha descripto

que la producción de un pequeño péptido de 43 aminoácidos codificado por un fago temperado,



denominado phi3T, estimula la lisogenización de la población a través de un mecanismo del tipo quorum

sensing. El péptido, denominado arbitrium, es procesado por la bacteria huésped y secretado; el péptido

liberado, es luego incorporado por otros miembros de la población bacteriana y utilizado para inhibir un

regulador del fago (AimP) que estimula la expresión del ciclo lítico del fago en toda la población. Este tipo

de estudios de interacción fago-fago son cada vez más frecuentes y han determinado que se establecen

relaciones de competencia y de mutualismo entre los fagos en los procesos de coinfección, lo que ha

llevado a proponer una nueva rama de estudio, la virología social.

El ciclo de vida del fago temperado lambda tiene un estatus especial en la historia de la biología molecular;

es uno de los sistemas biológicos más estudiados y dio lugar a varios descubrimientos de gran importancia

(i.e.,toma de decisiones entre los ciclos líticos-lisogénicos; mecanismos de recombinación; y concepto de

control negativo de la transcripción mediado por una molécula represora. El profago lambda se integra en el

genoma de su hospedador sin producirle ningún daño aparente.

Las interacciones entre profagos y lisógenos pueden ser beneficiosas para ambos miembros en términos

evolutivos. Mientras la célula toma a su cargo la replicación del genoma del fago, en algunas

circunstancias, el profago puede expresar ciertas proteínas que mejoran la supervivencia bacteriana

(fenómeno conocido como “conversión lisogénica”). Estas proteínas se encuentran codificadas en el fago

en regiones conocidas como “moron”. Un moron es una unidad transcripcional independiente, con su propio

promotor y región terminadora, y que contiene un porcentaje en GC distinto al contenido en GC de regiones

contiguas, producto de una transferencia horizontal. Por ejemplo, algunos fagos portan los genes

responsables de la producción de toxinas (i.e., toxina Shiga) y, al integrarse como profagos, convierten una

bacteria no patógena en patógena. Enfermedades como la difteria, el cólera, el síndrome urémico

hemolítico, el botulismo, o la escarlatina son mediadas por toxinas que están codificadas por fagos; la

expresión de esas toxinas se incrementa si se inducen los profagos (i.e, luego del tratamiento con ciertas

clases de antibióticos como las quinolonas, que inducen la respuesta SOS), lo que puede agravar la

enfermedad. La liberación de las toxinas al medio externo puede estar mediada activamente por

mecanismos de secreción celular del tipo III (i.e., toxina del cólera) o luego de la lisis celular (i.e toxina

Shiga). Otros ejemplos de factores de virulencia codificados en profagos contribuyen en el fenómeno de

exclusión a la superinfección; mejoran la interacción e invasión del patógeno en células epiteliales;

contribuyen en la evasión de la respuesta inmune u otorgan una mayor resistencia a la misma mediante la

expresión de actividad superóxido dismutasa o de factores mitogénicos; afectan la formación de

biopelículas; y expresan sistemas de toxina-antitoxina o proteínas anti CRIPRs. Los profagos pueden

también causar la inactivación de genes cromosómicos durante la inserción lo que da lugar a la pérdida de

función de dichos genes. Este proceso puede dar lugar a una conversión lisogénica negativa (i.e. la

inactivación del gen responsable de la síntesis de la enzima lisina descarboxilasa en Shigella) [15] o bien a

un fenómeno conocido como lisogenia activa: si la función del gen inactivado es esencial para el

crecimiento celular bajo ciertas condiciones, el profago se escinde y regenera el sitio de inserción,

contribuyendo de manera activa en la recuperación del gen inactivado durante la integración. Por ejemplo,

las células del patógeno Listeria monocytogenes requieren del factor sigma ComK para expresar los genes

necesarios que le permitan escapar de los fagosomas en las células eucariotas. En esas condiciones, un

profago inserto en el gen comK se escinde y se mantiene libre en el citoplasma bacteriano, posiblemente

en un estado de pseudolisogenia, permitiendo la expresión de ComK. Una vez que la bacteria se encuentra

libre en el citoplasma celular, el fago se reinserta nuevamente en comK, inactivándolo (lisogenia activa

reversible). Una situación similar ha sido descripta en Bacillus subtilis: un fago remanente, denominado

skin, se escinde de manera precisa de su sitio de integración lo que permite la expresión del factor Sigma



K, necesario para la expresión de los genes de esporulación en la célula madre. El elemento skin no posee

la capacidad de reintegrase, por lo que se pierde en la célula madre, pero se mantiene aún integrado en las

endosporas (lisogenia activa irreversible). La expresión de los factores de virulencia codificados en los

profagos puede estar regulada mediante factores de transcripción bacterianos (i.e., en la expresión de la

toxina del cólera participan los factores de transcripción de la bacteria Vibrio cholerae). En conjunto, cuando

un fago temperado integra su DNA en el cromosoma bacteriano se establece una relación con beneficios

mutuos para el lisógeno y el profago. En esta situación, el fago contribuye en los procesos ecológicos y

evolutivos de los lisógenos como agentes de transferencia horizontal de genes, como armas de

competencia bacteriana, y como fuente de variación genética para la innovación evolutiva.

Fagos intestinales y respuesta inmune

El intestino humano contiene una de los ecosistemas más densamente poblados, el cual es esencial para la

salud humana. La microbiota intestinal es una comunidad compleja de microorganismos integrada por

bacterias, arqueas, hongos y virus. Los estudios de población han resultado en una mejor caracterización

de la estructura y funciones del componente bacteriano de esta comunidad en individuos sanos, y de los

factores que influyen en su composición, como la dieta, la edad, y el estado de salud; sin embargo, la

composición y función del componente viral, que posee el potencial de modular el componente bacteriano,

ha sido menos estudiado y su posible contribución en la salud y la enfermedad aún no se ha determinado.

El viroma intestinal comprende virus eucariotas y fagos, siendo los fagos las entidades más abundantes en

el intestino. En muestras fecales de individuos adultos, se ha determinado una abundancia de 109-10

partículas virales y de 1011-12 bacterias por gramo de heces, lo que resulta en una proporción de

fago/bacteria de aproximadamente 0,1 a 1. Está relación es mucho menor a la estimada en muestras

marinas (que puede variar entre 2.6 a 160), y se explica porque en el intestino humano hay una mayor

abundancia de fagos temperados en comparación con los fagos líticos. La relación fago/bacteria no es

consistente en todo el tracto gastrointestinal, observándose un incremento de la misma en las superficies

mucosas de los seres humanos y de diferentes especies animales. Las proteínas de la cápside de algunos

fagos poseen dominios del tipo Ig que interactúan con la glicoproteína de la mucina, facilitando la adhesión

de los mismos a la mucosa del sistema gastrointestinal. Esta interacción podría facilitar la frecuencia de las

interacciones entre los fagos y las bacterias, estimulando la transferencia horizontal de genes a las células

del microbioma, proporcionando genes que confieren una ventaja competitiva en el ecosistema donde

ambos residen, y/o protegiendo al hospedador de infecciones bacterianas.

Los fagos colonizan el intestino infantil en un etapa temprana del individuo (se detectan 108 partículas

víricas por gramo de heces en bebés de 7 días); sin embargo, el “fagoma” del intestino de adultos sanos es

más abundante, diverso y estable que el “fagoma” del intestino de infantes sanos. En adultos el “fagoma”

comprende al menos 1000 secuencias de fagos y profagos, el 77% de los cuales son fagos con cola con

DNA de doble cadena. Se detectan también fagos de DNA de cadena simple de la familia Microviridae. Los

fagos de RNA presentes en el intestino humano representan menos del 0,02%. Un 50% de las secuencias

de fagos no pudieron ser clasificadas aún por la limitación de los bancos de datos públicos. En la mayoría

de los metagenomas de muestras fecales humanas se detectan genes que codifican para integrasas y

otros genes que son el sello de un estilo de vida lisogénico. Sin embargo, es importante tener en cuenta las

dificultades que limitan los estudios del fagoma intestinal humano, como la falta de regiones conservadas

en genomas virales (como el gen 16S rRNA en procariotas) para realizar amplificaciones dirigidas, la

dificultad de amplificar simultáneamente múltiples tipos de genomas virales (lineales o circulares de RNA o



DNA monocatenario o bicatenario), así como el no disponer de bases de datos virales completas. [16-18].

El fagoma intestinal infantil muestra una gran dinámica. Los fagos colonizan tempranamente el intestino del

recién nacido y a la semana del nacimiento se detectan principalmente siphovirus. Durante los primeros

meses de vida se producen cambios drásticos en la diversidad y abundancia de los fagos, y luego, hasta

los dos años, la población del microbioma bacteriano, los virus eucariotas y miembros de la familia

Microviridae se expanden mientras la población de fagos del orden Caudovirales se contraen [19]. Una vez

estabilizado, el viroma intestinal de un individuo sano es temporalmente estable y un 80-95% de los mismos

genotipos virales pueden identificarse durante un período de dos años y medio.

Existe una alta variación entre los fagomas intestinales en adultos, lo que indica que la composición del

fagoma intestinal de un individuo adulto sano es única. Los estudios realizados con fagomas y microbiomas

intestinales de gemelos monocigóticos (MZ) adultos mostraron una relación directa entre la diversidad de

los fagomas y la diversidad de los microbiomas, y una mayor diversidad de los fagomas en aquellas parejas

MZ cuyos microbiomas eran menos concordantes. La dieta, de manera directa o indirecta, puede afectar la

composición de los fagomas, lo que podría explicar las diferencias observadas. Se ha establecido también

una fuerte correlación entre la diversidad de los fagomas con el modo de nacimiento (natural versus

cesárea) y con ciertas enfermedades asociadas a un desequilibrio del microbioma intestinal.

Los estudios de metagenómica comparativa del microbioma intestinal sugieren el concepto de un

“microbioma intestinal saludable”, donde microorganismos similares proporcionan funciones similares que

contribuyen a la homeostasis intestinal. La estructura del microbioma intestinal saludable sería conservada

a un nivel taxonómico superior (de filo), donde predominan Firmicutes y Bacteroides, y estaría conformada

por un núcleo de especies, compartidas por más del 90% de los individuos, que proporcionarían las

funciones beneficiosas. Un concepto similar, el “fagoma intestinal saludable”, ha sido propuesto para

describir los fagos comunes presentes en los microbiomas intestinales de la mayoría de individuos sanos y

que serían críticos en el mantenimiento de la estructura y función de un ecosistema intestinal saludable. De

los 4301 fagos detectados en el estudio, se determinó que 23 estaban presentes en más del 50% de las

muestras. Se observó que la presencia de los fagos comunes en individuos sanos era inferior en individuos

que padecían enfermedades gastrointestinales (enfermedad de Chron y colitis ulcerosa).

La microbiota de un infante sano es rica en bacterias Gram positivas mientras que en la microbiota de un

adulto sano predominan Bacteroides, Firmicutes y Proteobacterias [20]. Si los fagos modulan la microbiota

intestinal, entonces tendrían un impacto indirecto en las interacciones microbio-huésped y por lo tanto en la

salud del huésped. Se ha demostrado una relación directa entre salud y diversidad y riqueza genética del

microbioma, y entre este y la riqueza y diversidad del fagoma del intestino humano. Los fagos pueden

translocarse a través de la mucosa intestinal hasta los ganglios linfáticos locales y los órganos internos, lo

que lleva a interacciones íntimas con el sistema inmunitario del huésped. Algunos estudios sugieren que el

cambio en la composición del fagoma (i.e., un incremento en la abundancia de Caudovirales) está asociado

a la inflamación del intestino grueso y del recto (colitis ulcerosa, CU). A su vez, ciertos fagos proporcionan

una inmunidad indirecta al huésped lisando a las bacterias susceptibles que se encuentren a lo largo del

intestino; estos fagos interaccionan con la mucina del moco intestinal a través de unos dominios, expuestos

en la cápside del fago, de proteínas similares a inmunoglobulinas (Ig).

En un reciente estudio in vivo de fagoterapia, realizado con un cóctel de tres fagos activos contra una cepa

de E. coli con características adherente-invasiva, se observó que los transcriptos asociados a los sistemas

de inmunidad innata y adquirida estaban up-regulados en los animales tratados con los fagos respecto a los



animales controles [21]. En animales libres de gérmenes, el tratamiento con los fagos estimuló, en las

placas de Peyer, la producción de la interferón gamma (IFN-?) por linfocitos T CD4+. Una respuesta similar

se observó con dos fagos activos contra Lactobacillus plantarum y Bacteroides thetalotaomicron, dos

bacterias comensales del intestino. Se demostró que los fagos inducen una respuesta inmune específica y

que actúan como adyuvantes; que la respuesta inmune es inducida por el ácido nucleico de los fagos, y no

por sus proteínas de cápside; y que la respuesta inmune fue mediada por células dendríticas a través del

receptor tipo Toll 9 (TLR9).

Aunque se ha sugerido la identificación de fagos como biomarcadores de salud y enfermedad (i.e. los fagos

contra Clostridiales y Alteromonadales), nuestro conocimiento es aún demasiado limitado para apreciar

plenamente la importancia de los fagos en la salud humana y especialmente si juegan un papel en el

desarrollo de enfermedades intestinales tales como enfermedades inflamatorias del intestino [22].

Aplicaciones biotecnológicas

Desde su descubrimiento hace ya más de 100 años los bacteriófagos han sido aplicados en numerosas

áreas biotecnológicas, que van desde el tratamiento de infecciones humanas mediante fagoterapia: phage

display, biopreservación y seguridad alimentaria, control biológico de patógenos de plantas,y biosensores,

hasta el control de corrosión y desinfección de superficies [23-24]

Hay distintas aplicaciones de fagos y sus enzimas, algunas de ellas indicadas en la Tabla 2

Tabla 2: se indican distintas aplicaciones de fagos y sus enzimas [25-36].

Aplicación Descripción Ejemplos/Productos

Fagoterapia Uso de fagos estrictamente

líticos como alternativa para el

tratamiento de infecciones

bacterianas resistentes a

antibióticos

Infecciones causadas por Acinetobacter baumannii

multirresistente, en un paciente diabético de 68 años

con pancreatitis necrotizante y Mycobacterium

abscessus, en una paciente de 15 años de edad con

un doble transplante de pulmón), y que no respondían

a los tratamientos antibióticos convencionales, fueron

tratadas con éxito mediante la administración de un

cóctel de fagos. Estos tratamientos son

personalizados (“a la carte”) y exigen el aislamiento y

la caracterización exhaustiva de fagos líticos o la

inactivación de la integrasa de mycofagos temperados



Productos de fagos

como

antimicrobianos, en

diagnóstico y

nanotecnología

Uso de endolisinas purificadas o

de fagos modificados

genéticamente para tratamientos

antibacterianos; los fagos

contienen y expresan genes

letales (endonucleasas de

restricción, holinas, sistemas

toxina-antitoxina) o han sido

conjugados con proteínas que

condensan el DNA o con

antibióticos.

Uso de fagos filamentosos,

fagos ?, T4 y mycovirus

modificados para la

administración dirigida de

agentes terapéuticos o en

diagnóstico.

Staphefekt (Micreos Salud Humana, Países Bajos),

producto disponible comercialmente que contiene una

endolisina para el tratamiento de infecciones de piel

causadas por Staphylococcus aureus.

Fago T7 recombinante que expresa una enzima

degradadora de exopolisacáridos (EPS) activa contra

biopelículas de E. coli patógenas.

SASPject; Terapéutica Fico, (Cambridge, Reino

Unido), fagos que portan endonucleasas de

restricción, holinas, sistemas toxina-antitoxina o

proteínas que condensan el DDN.

Biocontrol:

seguridad

alimentaria y en

agricultura

Uso de fagos líticos para

controlar patógenos

responsables de las

enfermedades transmitidas por

alimentos, o para

reducir/eliminar las bacterias

patógenas en sus reservorios o

en las superficies y equipos.

Productos aprobados por la Food and Drug

Administration para ser aplicados a distintos tipos de

alimentos frescos y procesados (ensaladas listas para

el consumo; productos derivados de aves, peces, etc.)

y disponibles en el mercado:

ListShield (Intralytix) o LISTEX (Micreos Food Safety)

para el control de Listeria monocytogenes;

Ecolicide® (EcolicidePX™), EcoShield (Intralytix) y

Finalyse® (Passport Food Safety Solutions) para el

control de E. coli O157: H7;

SalmoFresh™ (de Intralytix) y SALMONELEX y

PhageGuard S™ (Micreos Food Safety) para el control

de Salmonella;

ShigaShield™ y ShigActive™ (Intralytix) para el

control de Shigella spp.

Agriphage (Omnilytics) para el control de

Xanthomonas campestris

Phage display Diseño de fagos con superficie

decorada con péptidos o

proteínas heterólogas, para el

estudio de interacciones péptido-

proteìna, proteína-proteìna, y

proteína-DNA

Numerosas aplicaciones, entre ellas: la identificación

de epítopes; el suministro de antígenos; el

descubrimiento de fármacos; el diseño de vacunas, en

bioimagen y biosensores; y en el diseño de

nanomateriales. Mediante phage display, los péptidos

o todo el fago pueden ser diseñados, por ejemplo,

para enlazar y liberar medicamentos, vacunas o

etiquetas de imagen en ubicaciones específicas para

identificar u orientar células cancerosas o infecciones

bacterianas. Existen en el mercado diversos kits de

diagnóstico para la detección de patógenos humanos.

Un importante número de subsidios han sido otorgados por National Institutes of Health (NIH) para el

estudio de fagos como potencial alternativa a los antibióticos tradicionales y numerosas compañías



biotecnológicas en los últimos años han surgido alrededor del mundo para el desarrollo de nuevos

productos; entre ellas: MICROGEN, Intralytics, AmpliPhi Biosciences Corporation, BiomX, Locus

Biosciences, Center of Phage Technology, Phage Biotech Ltd., Fixed-Phage Limited, InnoPhage,

Pherecydes Pharma, y TechnoPhage SA).El mercado mundial de los fagos en 2017 fue de 568 millones de

dólares y se estima que crecerá durante el período 2017-2025 a un promedio anual de 3.9% hasta alcanzar

los 800 millones en 2026. Los productos que contienen fagos se aplican principalmente en el sector de

alimentos y bebidas (https://www.credenceresearch.com/report/bacteriophage-market). El desarrollo de

nuevas biotecnologías a “hombros de estos pequeños gigantes” se desarrolla sin duda a una velocidad

vertiginosa.
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