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Resumen

A lo largo de los afios transcurridos desde el descubrimiento de los virus, y en repetidas
ocasiones, los expertos han cambiado de opinion acerca de su identidad. Al principio fueron
considerados venenos, luego particulas con una forma de vida peculiar y mas tarde sustancias
bioguimicas. Los virus ocupan hoy, en el pensamiento biolégico, una zona gris entre lo vivo y lo
inerte: incapaces de autorreplicarse, lo cual consiguen, sin embargo, en el interior de una célula
viva. De esta manera, condicionan de forma determinante el comportamiento de tal
hospedador. Durante buena parte de la era moderna de la biologia, la inclusién de los virus en
el mundo inerte trajo consigo una consecuencia negativa, dado que se prescindié de ellos en el
estudio de la evolucion. Para nuestra fortuna, hoy la ciencia comienza a valorar el papel
decisivo de los virus en la historia de la vida.
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Summary

Over the years since the discovery of the virus, and in many occasions, experts have changed
their minds about their identity. At first they were considered poisons, then particles with a
peculiar life style and later biochemical substances. Viruses occupy today, in biological thought,
a gray area between the living and the nonliving: unable to self-replicate, but achieving it,
however, within a living cell. This, decisively determines the behavior of such host. For many
years along modern biology, the inclusion of viruses in the inert world brought a negative
consequence, since they were omitted in the study of evolution. Fortunately for us, science now
begins to appreciate the critical role of viruses in the history of life.
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Introduccion



Tal vez sea la expresion mas difundida que sali6 del libro El Principito, obra cumbre del francés
Antoine de Saint-Exupéry (1900-1944) -“He aqui mi secreto, que no puede ser mas simple: sélo
con el corazén se puede ver bien. Lo esencial es invisible a los o0jos”-. En aquel relato, esto le
decia un sabio zorro al joven protagonista, arribado a La Tierra desde un asteroide. Se trataba
de un consejo, con el que pretendia indicarle que la valoracion de los seres no debe fundarse
en un mero plano formal o en una simple observacion estética.

Los organismos vivos se comunican para coordinar, organizar el comportamiento y
reproducirse. Dichos organismos generan nuevas secuencias y nueva informacion por
competencia inherente al uso de sefiales cargadas de contenidos relevantes para su
supervivencia, para la sefalizacion y comunicacion [1,2]. Estas sefiales se utilizan en varios
niveles de organizacion y complejidad, comenzando con una simple molécula hasta
ecosistemas complejos. Los niveles de complejidad y diversidad se producen a través de
variacion genética, por ejemplo innovacion genética heredable, nuevos patrones combinatorios
de contenido genético y una variedad de RNAs no codificantes que sirven como redes de
regulaciéon y modificacion del contenido gendémico [3]. En las infecciones crénicas, los virus
colonizan cada célula de un organismo en una forma persistente y no litica. En la mayoria de
los casos, no son funcionales ("defectuosos”) y sirven como adaptaciones co- optadas
especificas de especie (y mas a menudo en tejidos especificos), es decir, elementos
reguladores que forman parte de una red integrada de regulacién génica [4]. De esta manera,
podemos mencionar que los elementos de transposicion en los genomas celulares
probablemente sean restos de eventos de infecciones virales [5]. Asimismo, las secuencias de
repeticiéon de elementos genéticos mdéviles, tales como LINEs, SINEs, LTR-retroposones, los
no-LTR retroposones y ALUs estan claramente relacionados con los retrovirus, como lo son las
transcriptasas reversas [6,7]. Ademas, hay fuertes indicadores de que, a causa de sus
secuencias repetitivas, los diversos RNAs no codificantes deriven también de infecciones
retrovirales y que, actualmente actian como herramientas modulares para las necesidades
celulares. Asi, la aparicion de la gendmica ha ayudado a corregir nuestra visién histdrica
sesgada de los virus y a colocarlos en el contexto correcto. Nuestro mundo es mucho mas viral
y diverso de lo que se pensaba [8]. Toda la vida en nuestro mundo debe sobrevivir a este
hébitat cargado de virus y para ello, las bacterias sobrevivientes en general retienen profagos
(o provirus) o sus unidades defectuosas. Si imaginamos que 1 ml de agua de mar contiene un
millébn de bacterias y diez veces mas secuencias virales se podria estimar que 1031
bacteriéfagos infectan 1024 pacterias por segundo [9]. Desde el comienzo de la vida, este ha
sido un proceso continuo. La enorme diversidad genética viral en el océano parece haber
establecido vias para la integracion de completos y complejos datos genéticos en los genomas
del hospedador, como por ejemplo la adquisicion de nuevos fenotipos complejos. Un préfago
puede proporcionar la adquisicion de mas de 100 nuevos genes en un solo evento individual de
edicion gendémica [10-12]. De esta manera, los virus junto con sus reguladores, parecen
capaces de hacer practicamente todo lo necesario para la vida, promoviendo la fotosintesis
[13], proporcionando genes esenciales para la traduccién [14], en la codificacién de citocromo
p450 [15], en la transferencia de las vias metabdlicas completas [16], proporcionando la
mayoria de los pliegues de proteinas [17], controlando los genes especificos placentarios [18],
controlando la mayoria de los aspectos de las redes de inmunidad innata y adaptativa [19,20] o
controlando la expresion de la proteina P53 [21]. De hecho, en un analisis de los datos de



gendmica de mas de diez millones de secuencias codificantes de proteinas, los genes que mas
prevalecen en la naturaleza son el producto de virus (como transposasas o capsides) [22,23].
Las consecuencias de la masiva omnipresencia de los virus ya no puede ser ignorada, y es en
ellos donde la informacién genética se ha adaptado a sobrevivir en esta biosfera.

Hace sesenta afios atras, los virus tomaron un protagonismo central en la investigacion
biol6gica, cuando se descubrieron los fagos, y se utilizaron los virus por primera vez como
transportistas y herramientas en &mbitos industriales para recombinar secuencias genéticas en
la generacién de vacunas [24].

Desde los primeros trabajos de biologia molecular hasta el presente, se establecié que las
proteinas y distintas formas de RNAs tenian funciones en la regulacion de la expresion
genética de manera de adaptarse a las condiciones ambientales cambiantes o experiencias
relacionadas con el estrés [25-26]. También hemos comprendido que los genes no
permanecen estaticos en un sitio sino que pueden movilizarse en los genomas [27-30]. Ahora,
el renacimiento de los virus esta tomando el centro del escenario [31]. Los datos de
investigacion de la ultima década indican el importante papel de los virus, tanto en la evolucion
de toda la vida y como simbiontes o socios coevolutivos de organismos huéspedes [32]. Hoy se
conoce que hasta un 40% del actual genoma de los mamiferos lo constituyen secuencias
repetitivas de retrovirus enddgenos (ERV) [33]. Curiosamente, estas secuencias ganaron
control estructural (epigenética) sobre la disposicion espacial y expresion del genoma lo que
sugiere que el virus adquiri6 control sobre el hospedador (genoma) durante la evolucion
genomica [34]. Ejemplificando lo dicho, algunos afios atras, Luis Villarreal y mas tarde Robin
Harris propusieron que los retrovirus serian participantes naturales en la evolucion de la
placenta de los mamiferos [35,36]. El mayor y a la vez complejo dilema a resolver era la
existencia de la inmunidad adaptativa (presentes en todos los vertebrados) para cual los virus
podrian ser claves en la solucién. Los retrovirus son naturalmente competentes para resolver
este dilema debido a su inherente necesidad de modificar y regular la inmunidad del huésped,
regular la diferenciacion del hospedador y promover la reproduccion del virus. Ademas, como
sostiene Witzany, los virus son los editores naturales del codigo (codigo regulatorio
especialmente) por lo que son agentes capaces de superponer nueva red en el genoma del
hospedador [37]. Afios posteriores, se pudo establecer el papel de los ERV en la provision de
los genes funcionales relevantes de la placenta, especialmente por medio de Syncytin [38,39].
Se ha demostrado experimentalmente que se requieren estos genes para la funcién placentaria
(trofoblasto) [40]. De hecho, parece que proporcionan dos funciones distintas trabajando
coordinadamente en el hospedador (fusién y supresion inmune) como se ve en dos versiones
de los genes Syncytin [41]. Pero el mejor sistema experimental para evaluar el papel
simbiogénico de ERV en la funcidn reproductiva de los mamiferos esta en el estudio con ovejas
con retrovirus jaagsiekte (JSRV) enddgenos (enJSRV) y sin retrovirus enddgeno [42]. Se
demostré que en JSRV es absolutamente necesario para el desarrollo de la placenta [43, 44].
De hecho, que JSRVs estén involucrados tanto en la funcién esencial como la enfermedad del
hospedador ha llevado a proponer que el antagonismo evolutivo entre el virus enddgeno de
proteccién y la enfermedad que causa el virus exdégeno conduciria a la coevolucion o simbiosis
en la que el virus y el huésped estan vinculados [45].



Interaccidn Virus-hospedador y su rol en la evolucién celular

La coevolucion virus-hospedador a menudo se describe como una carrera armamentista, y, sin
duda, esta descripcion refleja un aspecto clave de la interaccién entre el mundo viral y las
formas de vida celular [46]. De hecho, todos los organismos celulares poseen mdltiples
sistemas de defensa antivirus, o en sentido mas amplio, defensas contra la invasion de material
genético foraneo. La mayoria, sino todos los organismos celulares, emplean multiples
principios de defensa que incluyen, en primer lugar, la inmunidad innata, en segundo lugar, la
inmunidad adaptativa, y en tercer lugar, la muerte celular programada (induccion a la
inactividad). Hasta hace poco, se consideraban los dos ultimos sistemas, innovaciones
eucaridticas. Sin embargo, el descubrimiento del sistema procariético de inmunidad adaptativa
heredable, CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats, en
espafol: Repeticiones Palindromicas Cortas Agrupadas Regularmente Interespaciadas) y
CRISPR-genes Asociados [47,48] y la caracterizacion detallada de los sistemas toxina-
antitoxina (TA) que median la muerte celular o inducen la inactividad [49,50] han transformado
drasticamente el concepto completo de la evolucibn de la defensa antivirus. Estos
descubrimientos muestran que las tres ramas principales de defensa antivirus son intrinsecas a
la supervivencia de todas las formas celulares de vida y muy probablemente surgieron en las
primeras etapas de la evolucion. Ademas, el andlisis comparativo de la codificacion de loci
gendmicos que codifican los sistemas de defensa procariota sugiere fuertemente que las tres
ramas de defensas interactian intimamente con las células “tomando decisiones” para
proceder ya sea a través de la via de la respuesta inmune activa o a través de la via de control
de dafios por la muerte celular programada, en funcién del nivel de estrés genotdxico [51,52].
Aparentemente, las células animales enfrentan las mismas opciones [53,54]. Los genes que
codifican componentes del sistema de defensa ocupan hasta un 10% de los genomas
procariotas [52], y son aun mayores las fracciones de los genes codificadores de proteinas del
complemento para las eucariotas.

La mayoria de las proteinas implicadas en el DNA y en la modificacion de proteinas (sobre
todo, las histonas) y la remodelacion de la cromatina en eucariotas aparentemente evolucioné
a partir de procariotas ancestrales que estan involucrados en la defensa antivirus [71]. Para los
bacteriéfagos temperados, la integraciéon en los cromosomas de los genomas bacterianos (y
también arqueas) es una fase habitual del estilo de vida y la "domesticacion" de los genes de
los fagos acompanado de reclutamiento para diversas funciones celulares parece ser un
proceso evolutivo regular. La evolucion de la patogenicidad bacteriana es un fenémeno
practicamente importante que depende fundamentalmente de la utilizacion de genes de fagos
[72,73].

Es importante destacar que los propios genes de defensa, especialmente en los procariotas,
muestran notable movilidad y a menudo poseen propiedades de los elementos genéticos
egoistas. Los sistemas procariotas TA son tipicamente codificados como operones compactos
gue se transfieren en plasmidos y muestran propiedades adictivas, es decir, la toxina mata a
las células que carecen de los genes TA [55]. La carrera armamentista sin duda no termina con
la respuesta antivirus del hospedador: los virus han evolucionado con una gran variedad de
medidas contra- defensa que van mucho mas alla de la simple evasiéon inmunologica del



hospedador a través de mutacién rapida. Grandes virus (por ejemplo bacteriéfagos dsDNA,
herpesvirus o poxvirus animales) codifican multiples proteinas que contrarrestan los
mecanismos de inmunidad o previenen la muerte celular programada [56-58]. El repertorio de
proteinas de contra-defensa viral esta en constante crecimiento, y en grandes virus, tales
genes parecen ser mayoria [59]. El estudio de la contra-defensa, sobre todo en los virus de los
procariotas, recién ha comenzado, y, sin duda, humerosos mecanismos novedosos que se
dirigen a los sistemas de defensa especificos del huésped aln no se han descubierto [60,61].
Sorprendentemente, algunos bacteriéfagos incorporan sistemas de CRISPR-Cas del
hospedador y los utilizan contra otras islas de fago-defensa de otro hospedador bacteriano [62].
Incluso virus pequefios frecuentemente codifican genes contra- defensa, como supresores
RNA de interferencia que fueron identificados en numerosos virus RNA de plantas [63,64],
mientras que otros virus pequefos codifican “proteinas de seguridad” con doble funciéon que
contrarrestan la muerte celular programada [65]. Por lo tanto, la coevolucibn de multiples
niveles de defensa y contra-defensa es inmanente a la interaccién virus-huésped y, por tanto, a
la vida misma. Sin embargo, tampoco la carrera armamentista se limita a los sistemas células-
virus. Numerosos virus que parasitan otros virus han sido descubiertos, y los virus gigantes
albergan movilomas complejos que incluyen virus pequefios (conocido como virofagos),
elementos tipo plasmidos, transposones e intrones self-splicing (auto-empalme) [66-68]. El
segundo aspecto importante de la coevolucién implica la cooperacién mediante el cual los virus
contribuyen a las funciones celulares, mientras genes celulares son recogidos por los virus y
utilizados para contra- defensa y otras funciones. Para ambos procariotas y eucariotas, tales
funciones implican reparacion del DNA que, de forma similar a la defensa, emplea a varias
nucleasas y helicasas. En eucariotas, el sistema de RNA de interferencia, se cree que ha
evolucionado a partir de un sistema ancestral de defensa contra virus de RNA [69]. Algunas de
las nucleasas claves involucrados en el procesamiento del RNA y la degradacién en eucariotas
evoluciond a partir de las nucleasas de toxina procariotas [70].

Los préfagos capturan habitualmente genes bacterianos 'normales' y asi sirven como vehiculos
para la transduccion, una importante via de transferencia horizontal de genes entre procariotas.
Un sorprendente ejemplo de ello es la transferencia de fotosistemas mediada por fagos entre
cianobacterias [74]. Asimismo, gracias a su evolucion rapida, los fagos proporcionan los
medios de comunicacién perfecto para innovacion funcional. Por lo tanto, todo el fendmeno de
la herencia epigenética, fundamental para que aparezca la vida eucariota, parece ser un
derivado de sistemas de defensa antivirus. Por otra parte, la mayoria del DNA gendmico de
muchos animales y plantas (hasta dos tercios en los seres humanos y 90% en el maiz) parece
derivar de elementos moviles, principalmente retrotransposones [75,76]. Aunque la mayoria de
estos elementos no son funcionales, algunos son inevitablemente reclutados para diversas
funciones, en particular, reguladora, y dada la extrema abundancia de retroelementos, la
contribuciéon global de ese reclutamiento parece ser bastante sustancial [77]. Asi, como
argumentan Aravind y colaboradores podemos sostener que "los sistemas de conflictos
biolégicos sirvieron como “semilleros” de innovaciones evolutivas en el mundo de las
proteinas", y tales innovaciones fueron fundamentales en las principales transiciones evolutiva,
en particular eucariogenesis [70].

La autora es investigadora adjunta de CONICET.
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