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Resumen

A lo largo de los años transcurridos desde el descubrimiento de los virus, y en repetidas

ocasiones, los expertos han cambiado de opinión acerca de su identidad. Al principio fueron

considerados venenos, luego partículas con una forma de vida peculiar y más tarde sustancias

bioquímicas. Los virus ocupan hoy, en el pensamiento biológico, una zona gris entre lo vivo y lo

inerte: incapaces de autorreplicarse, lo cual consiguen, sin embargo, en el interior de una célula

viva. De esta manera, condicionan de forma determinante el comportamiento de tal

hospedador. Durante buena parte de la era moderna de la biología, la inclusión de los virus en

el mundo inerte trajo consigo una consecuencia negativa, dado que se prescindió de ellos en el

estudio de la evolución. Para nuestra fortuna, hoy la ciencia comienza a valorar el papel

decisivo de los virus en la historia de la vida.
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Summary

Over the years since the discovery of the virus, and in many occasions, experts have changed

their minds about their identity. At first they were considered poisons, then particles with a

peculiar life style and later biochemical substances. Viruses occupy today, in biological thought,

a gray area between the living and the nonliving: unable to self-replicate, but achieving it,

however, within a living cell. This, decisively determines the behavior of such host. For many

years along modern biology, the inclusion of viruses in the inert world brought a negative

consequence, since they were omitted in the study of evolution. Fortunately for us, science now

begins to appreciate the critical role of viruses in the history of life.
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Introduccion



Tal vez sea la expresión más difundida que salió del libro El Principito, obra cumbre del francés

Antoine de Saint-Exupéry (1900-1944) -“He aquí mi secreto, que no puede ser más simple: sólo

con el corazón se puede ver bien. Lo esencial es invisible a los ojos”-. En aquel relato, esto le

decía un sabio zorro al joven protagonista, arribado a La Tierra desde un asteroide. Se trataba

de un consejo, con el que pretendía indicarle que la valoración de los seres no debe fundarse

en un mero plano formal o en una simple observación estética.

Los organismos vivos se comunican para coordinar, organizar el comportamiento y

reproducirse. Dichos organismos generan nuevas secuencias y nueva información por

competencia inherente al uso de señales cargadas de contenidos relevantes para su

supervivencia, para la señalización y comunicación [1,2]. Estas señales se utilizan en varios

niveles de organización y complejidad, comenzando con una simple molécula hasta

ecosistemas complejos. Los niveles de complejidad y diversidad se producen a través de

variación genética, por ejemplo innovación genética heredable, nuevos patrones combinatorios

de contenido genético y una variedad de RNAs no codificantes que sirven como redes de

regulación y modificación del contenido genómico [3]. En las infecciones crónicas, los virus

colonizan cada célula de un organismo en una forma persistente y no lítica. En la mayoría de

los casos, no son funcionales ("defectuosos") y sirven como adaptaciones co- optadas

específicas de especie (y más a menudo en tejidos específicos), es decir, elementos

reguladores que forman parte de una red integrada de regulación génica [4]. De esta manera,

podemos mencionar que los elementos de transposición en los genomas celulares

probablemente sean restos de eventos de infecciones virales [5]. Asimismo, las secuencias de

repetición de elementos genéticos móviles, tales como LINEs, SINEs, LTR-retroposones, los

no-LTR retroposones y ALUs están claramente relacionados con los retrovirus, como lo son las

transcriptasas reversas [6,7]. Además, hay fuertes indicadores de que, a causa de sus

secuencias repetitivas, los diversos RNAs no codificantes deriven también de infecciones

retrovirales y que, actualmente actúan como herramientas modulares para las necesidades

celulares. Así, la aparición de la genómica ha ayudado a corregir nuestra visión histórica

sesgada de los virus y a colocarlos en el contexto correcto. Nuestro mundo es mucho más viral

y diverso de lo que se pensaba [8]. Toda la vida en nuestro mundo debe sobrevivir a este

hábitat cargado de virus y para ello, las bacterias sobrevivientes en general retienen profagos

(o provirus) o sus unidades defectuosas. Si imaginamos que 1 ml de agua de mar contiene un

millón de bacterias y diez veces más secuencias virales se podría estimar que 1031

bacteriófagos infectan 1024 bacterias por segundo [9]. Desde el comienzo de la vida, este ha

sido un proceso continuo. La enorme diversidad genética viral en el océano parece haber

establecido vías para la integración de completos y complejos datos genéticos en los genomas

del hospedador, como por ejemplo la adquisición de nuevos fenotipos complejos. Un prófago

puede proporcionar la adquisición de más de 100 nuevos genes en un solo evento individual de

edición genómica [10-12]. De esta manera, los virus junto con sus reguladores, parecen

capaces de hacer prácticamente todo lo necesario para la vida, promoviendo la fotosíntesis

[13], proporcionando genes esenciales para la traducción [14], en la codificación de citocromo

p450 [15], en la transferencia de las vías metabólicas completas [16], proporcionando la

mayoría de los pliegues de proteínas [17], controlando los genes específicos placentarios [18],

controlando la mayoría de los aspectos de las redes de inmunidad innata y adaptativa [19,20] o

controlando la expresión de la proteína P53 [21]. De hecho, en un análisis de los datos de



genómica de más de diez millones de secuencias codificantes de proteínas, los genes que mas

prevalecen en la naturaleza son el producto de virus (como transposasas o cápsides) [22,23].

Las consecuencias de la masiva omnipresencia de los virus ya no puede ser ignorada, y es en

ellos donde la información genética se ha adaptado a sobrevivir en esta biosfera.

Hace sesenta años atrás, los virus tomaron un protagonismo central en la investigación

biológica, cuando se descubrieron los fagos, y se utilizaron los virus por primera vez como

transportistas y herramientas en ámbitos industriales para recombinar secuencias genéticas en

la generación de vacunas [24].

Desde los primeros trabajos de biología molecular hasta el presente, se estableció que las

proteínas y distintas formas de RNAs tenían funciones en la regulación de la expresión

genética de manera de adaptarse a las condiciones ambientales cambiantes o experiencias

relacionadas con el estrés [25-26]. También hemos comprendido que los genes no

permanecen estáticos en un sitio sino que pueden movilizarse en los genomas [27-30]. Ahora,

el renacimiento de los virus está tomando el centro del escenario [31]. Los datos de

investigación de la última década indican el importante papel de los virus, tanto en la evolución

de toda la vida y como simbiontes o socios coevolutivos de organismos huéspedes [32]. Hoy se

conoce que hasta un 40% del actual genoma de los mamíferos lo constituyen secuencias

repetitivas de retrovirus endógenos (ERV) [33]. Curiosamente, estas secuencias ganaron

control estructural (epigenética) sobre la disposición espacial y expresión del genoma lo que

sugiere que el virus adquirió control sobre el hospedador (genoma) durante la evolución

genómica [34]. Ejemplificando lo dicho, algunos años atrás, Luis Villarreal y más tarde Robin

Harris propusieron que los retrovirus serían participantes naturales en la evolución de la

placenta de los mamíferos [35,36]. El mayor y a la vez complejo dilema a resolver era la

existencia de la inmunidad adaptativa (presentes en todos los vertebrados) para cual los virus

podrían ser claves en la solución. Los retrovirus son naturalmente competentes para resolver

este dilema debido a su inherente necesidad de modificar y regular la inmunidad del huésped,

regular la diferenciación del hospedador y promover la reproducción del virus. Además, como

sostiene Witzany, los virus son los editores naturales del código (código regulatorio

especialmente) por lo que son agentes capaces de superponer nueva red en el genoma del

hospedador [37]. Años posteriores, se pudo establecer el papel de los ERV en la provisión de

los genes funcionales relevantes de la placenta, especialmente por medio de Syncytin [38,39].

Se ha demostrado experimentalmente que se requieren estos genes para la función placentaria

(trofoblasto) [40]. De hecho, parece que proporcionan dos funciones distintas trabajando

coordinadamente en el hospedador (fusión y supresión inmune) como se ve en dos versiones

de los genes Syncytin [41]. Pero el mejor sistema experimental para evaluar el papel

simbiogénico de ERV en la función reproductiva de los mamíferos está en el estudio con ovejas

con retrovirus jaagsiekte (JSRV) endógenos (enJSRV) y sin retrovirus endógeno [42]. Se

demostró que en JSRV es absolutamente necesario para el desarrollo de la placenta [43, 44].

De hecho, que JSRVs estén involucrados tanto en la función esencial como la enfermedad del

hospedador ha llevado a proponer que el antagonismo evolutivo entre el virus endógeno de

protección y la enfermedad que causa el virus exógeno conduciría a la coevolución o simbiosis

en la que el virus y el huésped están vinculados [45].



Interacción Virus-hospedador y su rol en la evolución celular

La coevolución virus-hospedador a menudo se describe como una carrera armamentista, y, sin

duda, esta descripción refleja un aspecto clave de la interacción entre el mundo viral y las

formas de vida celular [46]. De hecho, todos los organismos celulares poseen múltiples

sistemas de defensa antivirus, o en sentido más amplio, defensas contra la invasión de material

genético foráneo. La mayoría, sino todos los organismos celulares, emplean múltiples

principios de defensa que incluyen, en primer lugar, la inmunidad innata, en segundo lugar, la

inmunidad adaptativa, y en tercer lugar, la muerte celular programada (inducción a la

inactividad). Hasta hace poco, se consideraban los dos últimos sistemas, innovaciones

eucarióticas. Sin embargo, el descubrimiento del sistema procariótico de inmunidad adaptativa

heredable, CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats, en

español: Repeticiones Palindrómicas Cortas Agrupadas Regularmente Interespaciadas) y

CRISPR-genes Asociados [47,48] y la caracterización detallada de los sistemas toxina-

antitoxina (TA) que median la muerte celular o inducen la inactividad [49,50] han transformado

drásticamente el concepto completo de la evolución de la defensa antivirus. Estos

descubrimientos muestran que las tres ramas principales de defensa antivirus son intrínsecas a

la supervivencia de todas las formas celulares de vida y muy probablemente surgieron en las

primeras etapas de la evolución. Además, el análisis comparativo de la codificación de loci

genómicos que codifican los sistemas de defensa procariota sugiere fuertemente que las tres

ramas de defensas interactúan íntimamente con las células “tomando decisiones” para

proceder ya sea a través de la vía de la respuesta inmune activa o a través de la vía de control

de daños por la muerte celular programada, en función del nivel de estrés genotóxico [51,52].

Aparentemente, las células animales enfrentan las mismas opciones [53,54]. Los genes que

codifican componentes del sistema de defensa ocupan hasta un 10% de los genomas

procariotas [52], y son aún mayores las fracciones de los genes codificadores de proteínas del

complemento para las eucariotas.

La mayoría de las proteínas implicadas en el DNA y en la modificación de proteínas (sobre

todo, las histonas) y la remodelación de la cromatina en eucariotas aparentemente evolucionó

a partir de procariotas ancestrales que están involucrados en la defensa antivirus [71]. Para los

bacteriófagos temperados, la integración en los cromosomas de los genomas bacterianos (y

también arqueas) es una fase habitual del estilo de vida y la "domesticación" de los genes de

los fagos acompañado de reclutamiento para diversas funciones celulares parece ser un

proceso evolutivo regular. La evolución de la patogenicidad bacteriana es un fenómeno

prácticamente importante que depende fundamentalmente de la utilización de genes de fagos

[72,73].

Es importante destacar que los propios genes de defensa, especialmente en los procariotas,

muestran notable movilidad y a menudo poseen propiedades de los elementos genéticos

egoístas. Los sistemas procariotas TA son típicamente codificados como operones compactos

que se transfieren en plásmidos y muestran propiedades adictivas, es decir, la toxina mata a

las células que carecen de los genes TA [55]. La carrera armamentista sin duda no termina con

la respuesta antivirus del hospedador: los virus han evolucionado con una gran variedad de

medidas contra- defensa que van mucho más allá de la simple evasión inmunologica del



hospedador a través de mutación rápida. Grandes virus (por ejemplo bacteriófagos dsDNA,

herpesvirus o poxvirus animales) codifican múltiples proteínas que contrarrestan los

mecanismos de inmunidad o previenen la muerte celular programada [56-58]. El repertorio de

proteínas de contra-defensa viral está en constante crecimiento, y en grandes virus, tales

genes parecen ser mayoría [59]. El estudio de la contra-defensa, sobre todo en los virus de los

procariotas, recién ha comenzado, y, sin duda, numerosos mecanismos novedosos que se

dirigen a los sistemas de defensa específicos del huésped aún no se han descubierto [60,61].

Sorprendentemente, algunos bacteriófagos incorporan sistemas de CRISPR-Cas del

hospedador y los utilizan contra otras islas de fago-defensa de otro hospedador bacteriano [62].

Incluso virus pequeños frecuentemente codifican genes contra- defensa, como supresores

RNA de interferencia que fueron identificados en numerosos virus RNA de plantas [63,64],

mientras que otros virus pequeños codifican “proteínas de seguridad” con doble función que

contrarrestan la muerte celular programada [65]. Por lo tanto, la coevolución de múltiples

niveles de defensa y contra-defensa es inmanente a la interacción virus-huésped y, por tanto, a

la vida misma. Sin embargo, tampoco la carrera armamentista se limita a los sistemas células-

virus. Numerosos virus que parasitan otros virus han sido descubiertos, y los virus gigantes

albergan movilomas complejos que incluyen virus pequeños (conocido como virofagos),

elementos tipo plásmidos, transposones e intrones self-splicing (auto-empalme) [66-68]. El

segundo aspecto importante de la coevolución implica la cooperación mediante el cual los virus

contribuyen a las funciones celulares, mientras genes celulares son recogidos por los virus y

utilizados para contra- defensa y otras funciones. Para ambos procariotas y eucariotas, tales

funciones implican reparación del DNA que, de forma similar a la defensa, emplea a varias

nucleasas y helicasas. En eucariotas, el sistema de RNA de interferencia, se cree que ha

evolucionado a partir de un sistema ancestral de defensa contra virus de RNA [69]. Algunas de

las nucleasas claves involucrados en el procesamiento del RNA y la degradación en eucariotas

evolucionó a partir de las nucleasas de toxina procariotas [70].

Los prófagos capturan habitualmente genes bacterianos 'normales' y así sirven como vehículos

para la transducción, una importante vía de transferencia horizontal de genes entre procariotas.

Un sorprendente ejemplo de ello es la transferencia de fotosistemas mediada por fagos entre

cianobacterias [74]. Asimismo, gracias a su evolución rápida, los fagos proporcionan los

medios de comunicación perfecto para innovación funcional. Por lo tanto, todo el fenómeno de

la herencia epigenética, fundamental para que aparezca la vida eucariota, parece ser un

derivado de sistemas de defensa antivirus. Por otra parte, la mayoría del DNA genómico de

muchos animales y plantas (hasta dos tercios en los seres humanos y 90% en el maíz) parece

derivar de elementos móviles, principalmente retrotransposones [75,76]. Aunque la mayoría de

estos elementos no son funcionales, algunos son inevitablemente reclutados para diversas

funciones, en particular, reguladora, y dada la extrema abundancia de retroelementos, la

contribución global de ese reclutamiento parece ser bastante sustancial [77]. Así, como

argumentan Aravind y colaboradores podemos sostener que ''los sistemas de conflictos

biológicos sirvieron como “semilleros” de innovaciones evolutivas en el mundo de las

proteínas'', y tales innovaciones fueron fundamentales en las principales transiciones evolutiva,

en particular eucariogenesis [70].

La autora es investigadora adjunta de CONICET.
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